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figure of merit. This E map contained all 22 non-hydrogen 
atoms to be found. For the modified cardenolide structure, the 
E map calculated for the phase set with the second-highest 
combined figure of merit showed 31 atoms of the total 35 
non-hydrogen atoms of the molecule. It is important to 
remark that the translations of the correctly positioned 
molecules did not coincide with the translations of the 
structural fragments selected from the normal E map. The 
modification of E values is easily incorporated in existing 
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Fig. 1. Comparison of E maps of 3-methoxy-14a,15a-oxido- 
estra-l,3,5(10)-triene-17a-ol. The peaks of the best E map 
calculated with the Eobs(hkl ) are connected by dotted lines 
representing a grid. The solid black circles mark the peaks which 
were used for the calculation of the Errag(hkl). The solid lines 
connect the 22 highest peaks in the E map with the third-highest 
combined figure of merit calculated with the Em(hkl ). All these 
peaks correspond to atoms. 

direct-methods programs and is an interesting alternative to 
the above-mentioned methods. 
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Abstract 

An expression is given for the estimated standard deviation 
of the atom-to-plane distance of an atom defining the 
least-squares plane. 

Two least-squares methods have been proposed to deter- 
mine the best-plane parameters and their error matrix 
(variance-covariance matrix): one is a method of undeter- 
mined multiplier (Ito, 1981a, hereinafter called paper I), and 
the other is an elimination method (Ito, 1981b, paper II). 
Although the two methods give identical results in a general 
case, the elimination method has an advantage that it can 
deal with a plane defined with only three atoms. 

In paper I, an expression is given for the-estimated 
standard deviation of the atom-to-plane distance of the ith 
atom :* 

* As will be explained in the following, tr~ of (11) and a2 of (1) are 
the estimated standard deviations of the atom-to-plane distance of 
an atom defining and not defining the plane, respectively. 
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o2(dt) = (dMo)ii + f/inMYi, (1) 

where dM 0 is the error matrix for the atom-to-plane distances 
originating from the atomic positional errors, 9i (transpose of 
Y~) is an atomic coordinate matrix: 

91 ~ (xiYiZi-- 1), (2) 

and nM is the error matrix for the four plane parameters, 

fi = (m I m 2 m 3 do), (3) 

which is obtained through the best-plane calculations. 
Expression (1) has been derived under the assumption that 
the atomic coordinates and the plane ,parameters are not 
correlated. Therefore, it is applicable only to atoms not 
defining the plane. The assumption is not valid for the 
plane-defining atoms because their coordinates are used to 
determine the plane parameters. Particularly in the case of a 
three-atom plane, the correlation is perfect; since the three 
atoms necessarily lie on the plane, their atom-to-plane 
distances of zero should have zero standard deviations, 
which is evidently in contradiction with (1). 
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The atom-to-plane distances d of the n atoms defining the 
plane are dependent on the least-squares adjustments of the 
plane parameters An through the relationship, 

where 

d = d (°> - Y A n ,  (4) 

a ~ (did2. . .  d,), (5) 

9 = (y~ Y2... Y,), (6) 

and d (°) denotes the distances before adjustments. Sub- 
stituting the least-squares solution [equations (20a) and (23) 
of paper I1 

An = "M~"Wd (°) (7) 

into (4), we obtain the relationship 

da = d (°) a (°) - -  Y n M Y W d  (°) (~(o~ _ d(O) a(o~ W Y  " M ~ '  

+ YAnAfiY, (8) 

where W is the weight matrix defined by 

W = d Mo 1. (9) 

The error matrix for d can readily be obtained from (8) with 
the aid of (9) as 

dMl _-- d M o - -  Y n M Y W d M o  - dMo W Y n M ~ '  + y ' z M ~ '  

= a M  o - -  Y"M'~ ' .  (10)  

The diagonal element of dlVll is the variance of the 
atom-to-plane distance of the plane-defining atom, 

a~(di) = ( d M o ) i i  - -  Y i  "MYr (11) 

It should be noted that (11) is the same as (1) except that the 
sign of the second term is reversed. 

Expression (11) may be checked for a three-atom plane. In 
this case reference must be made to the elimination method 
of paper II. It can generally be shown that 

Y"M~'  = YePM~(e, (12) 

where Ye is the derivative matrix [equation (12) of paper II] 
after one of the plane parameters has been eliminated, and 
PM is the error matrix for the remaining three plane 
parameters which is given by 

PM = (Ye WYe)-' .  (13) 

Now, since y~-i is defined for a three-atom plane, (12) 
together with (13) gives 

Y"M~'  = W -1 = dM O, (14) 

that is, from (10), 

d M l = 0  , (15) 

for a three-atom plane, which is the expected result. 
The Fortran program BP70 of paper II has been modified 

according to (11) for the plane-defining atoms. 
A simple example of a four-atom group will serve for 

illustration. The four atoms are located at A (1,0,0), B(0,1,0), 
C(-1,0,0) and D(0,-1,0.01) in a Cartesian coordinate 
system in A units, with a common isotropic standard 
deviation of 0.01 A. If we define a plane with three atoms A, 
B and C, the plane evidently coincides with the x,y plane 
through the origin, and atom D not defining the plane is out 
of the plane by 0.01 A, with the standard deviation a 2 of (1) 
of 0.02 A; atom D is coplanar within the standard deviation. 

On the other hand, if we define a plane with all the four 
atoms, the best plane inclines by 0.29 (57) ° from the x,y 
plane, with the origin-to plane distance of 0-0025 (50)A. 
Atoms A and C, and B and D are out of the plane by 
0.0025 A in opposite directions, with a common standard 
deviation a I of equation (11) of 0.005 A; the four atoms are 
again planar within the standard deviations. 

X 2 =_ ~. [di/ol(di)] 2 (16) 

for the four atoms is 1.00 for one degree of freedom, which 
also confirms the planarity. However, such statistical tests 
based on the ratios d/a must be used with caution, because 
any groups of atoms would hardly be planar, if the atomic 
positions are determined with very high precision. In other 
words, the atom-to-plane distances themselves are also 
important to test planarity (e.g. d less than +0.005 A). 
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Abstract 

Magnetoelectric classes in which the magnetoelectric tensor 
is non-symmetrical allow the existence of spontaneous 
electrical currents. 
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Les 58 classes magn&o61ectriques ont 6t~ 6num+r6es par 
Indenbom (1960; voir aussi Cracknell, 1975), qui a pr+cis+ 
la forme du tenseur magn&o+lectrique dans chacune d'elles. 
La th~orie des repr+sentations permet d'obtenir simplement 
ces r+sultats (Bertaut, 1968; Sivardi~re & Waintal, 1969; 
Sivardi+re, 1969). 
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